AN-698 APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/326-8703 • www.analog.com

Configuration Registers of ADM106x

by Peter Canty

INTRODUCTION

The ADM106x family of fully programmable supply sequencers and supervisors can be used as complete supply management solutions in systems using multiple voltage supplies. Such applications include line cards in telecommunications infrastructure equipment (central office, base stations) and blade cards in servers.

All of the features of the ADM106x are programmable through an SMBus interface. The devices also contain nonvolatile memory (EEPROM) so that the configuration of these features can be stored on-chip and downloaded each time on power-up.

This application note briefly outlines the functions of the ADM106x, and provides details of the registers required to set up the configuration of the ADM106x. The programming windows of the ADM106x graphical user interface (GUI) based software provided by ADI to configure these devices is also shown.

For more information on the features and functions of the ADM106x, please refer to the relevant data sheet.

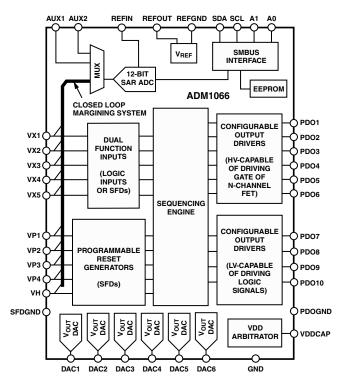


Figure 1. ADM1066 Functional Block Diagram

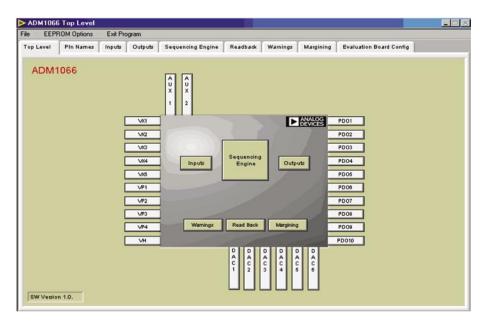


Figure 2. Top Level Menu of ADM106x Software

UPDATING THE ADM 106x

The following pages contain all of the register information required to configure the many features of the ADM106x. The ADM106x contains both volatile and nonvolatile memory, which must be set up correctly if any alterations to the configuration are to be updated properly in the device. The volatile memory of the ADM106x is constructed with double buffered latches. For information on this construction, please refer to the data sheet.

The register/bit map detail below shows the configuration required to

- Update volatile memory in real time.
- Update volatile memory off line then update all at once.
- Enable block erase.
- Download EEPROM contents to RAM.

The sequencing engine also has a number of configuration bits that are used to update it and are detailed below.

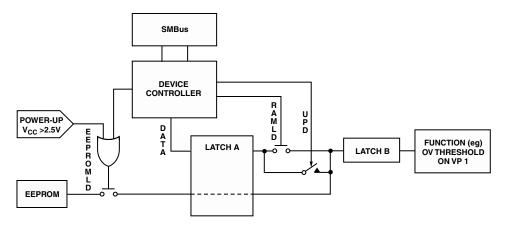


Figure 3. Configuration Update Flow Diagram

Table I.

Reg.	Reg. Name	Bits	Bit Name	R/W	Description
90H	UPDCFG	7:3			Cannot be used.
		2	EEBLKERS	R/W	Enable configuration EEPROM Block Erase.
		1	CFGUPD	W	Update configuration registers from holding registers (self clears).
		0	CONTUPD	R/W	Enable continuous update of configuration registers.
D8H	UDOWNLD	7:1			Cannot be used.
		0	EEDWNLD	W	Download configuration data from EEPROM. This also happens automatically at power-up. Self clears on completion.
F4	MANID	7:0		R	Manufacturer's ID, returns 0x41. Good method of verifying communication.

-2- REV. 0

ADM106x INPUTS

The ADM106x devices have 10 inputs. Five of these are dedicated supply fault detectors—highly programmable reset generators whose inputs can detect overvoltage, undervoltage, or out-of-window faults. With these five inputs, voltages from 0.573 V to 14.4 V can be supervised. The undervoltage and overvoltage thresholds can all be programmed to 8-bit resolution. The comparators used to detect faults on the inputs have digitally programmable hysteresis to provide immunity to supply bounce. Each of these inputs also has a glitch filter whose timeout is programmable up to 100 µs.

The other five inputs have dual functionality. They can be used as analog inputs, like the first five channels described above, or as general-purpose logic inputs. As analog inputs, these channels function exactly the same as those described above. The major difference is that these inputs do not have internal potentiometer resistors and present a true high impedance to the input pin. Their

input range is thus limited to 0.573 V to 1.375 V, but the high impedance means that an external resistor divide network can be used to divide down any out-of-range supply to a value within range. Thus, +48 V, +24 V, -5 V, and -12 V can all be supervised by these channels with the appropriate external resistor network.

As digital inputs, these pins can be used to detect enable signals, PWRGD, POWRON, and so on. They are TTL and CMOS compatible. When used in this mode, the analog circuitry of these pins can be mapped to its sister input pin (one of the first five inputs described above). Thus, VX1 can be used as a second detector on VP1, VX2 can be used with VP2, and so on. VX5 is mapped to VH. With a second detector available, the user can program ALARM as well as fault functions.

Figure 4 shows the GUI window for configuring the inputs. Table II details all of the registers used to configure the inputs to perform the functions described above.

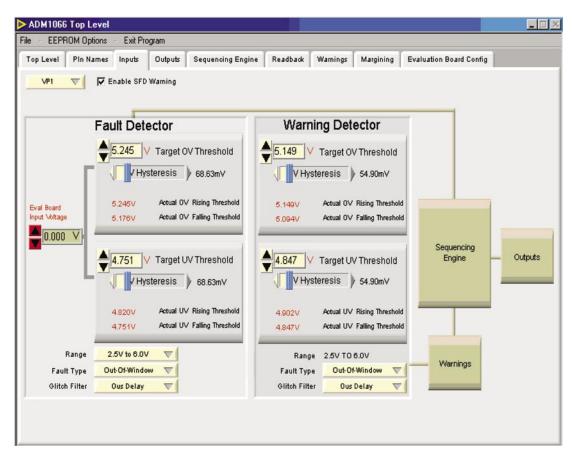


Figure 4. ADM106x Inputs Window

REV. 0 –3–

Table II.

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descr	iption		
VP1	00H	PS10VTH	7:0	OV7-OV0	R/W	8-bit	digital v	alue fo	or OV threshold on PS1 SFD.
	01H	PS10VHYST	7:5			Canno	ot be us	sed.	
			4:0	HY4-HY0	R/W	5-bit l	nystere	sis to b	e subtracted from PS10VTH when OV is true.
	02H	PS1UVTH	7:0	UV7–UV0	R/W	8-bit	digital v	alue fo	or UV threshold on PS1 SFD.
	03H	PS1UVHYST	7:5			Canno			
			4:0			5-bit l	nystere	sis to b	e added from PS1UVTH when UV is true.
	04H	SFDV1CFG	7:5			Canno	ot be us	sed.	
			4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (µs)
						0	0	0	0
						0	0	1	5
						0	1	0	10
						0	1	1	20
						1	0	0	30
						1	0	1	50
						1	1	0	75
						1	1	1	100
			1:0	RS1-RS0	R/W	RS1	RS0	Fault	Type Select
						0	0	OV	
						0	1	UV o	r OV
						1	0	UV	
						1	1	Off	
	05H	SFDV1SEL	7:2			Canno	ot be us	sed.	
			1:0	SEL1-SEL0	R/W	SEL1	SEL0	Rang	e Select
						0	0	Midra	ange (2.5 V to 6 V)
						0	1	Low	Range (1.25 V to 3 V)
						1	0	Ultra	low Range (0.573 V to 1.375 V)
						1	1	Ultra	low Range (0.573 V to 1.375 V)

-4- REV. 0

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	iption		
VP2	08H	PS2OVTH	7:0	OV7-OV0	R/W	8-bit c	ligital v	alue fo	r OV threshold on PS2 SFD.
	09H	PS20VHYST	7:5			Canno	ot be us	ed.	
			4:0	HY4-HY0	R/W	5-bit h	ysteres	sis to b	e subtracted from PS2OVTH when OV is true.
	0AH	PS2UVTH	7:0	UV7–UV0	R/W	8-bit c	ligital v	alue fo	r UV threshold on PS2 SFD.
	0BH	PS2UVHYST	7:5			Canno	ot be us	ed.	
			4:0			5-bit h	e added from PS2UVTH when UV is true.		
	0CH	SFDV2CFG	7:5			Cannot be used.			
			4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (µs)
						0	0	0	0
						0	0	1	5
						0	1	0	10
						0	1	1	20
						1	0	0	30
						1	0	1	50
						1	1	0	75
						1	1	1	100
			1:0	RS1-RS0	R/W	RS1	RS0	Fault	Type Select
						0	0	OV	
						0	1	UV o	r OV
						1	0	UV	
						1	1	Off	
	0DH	SFDV2SEL	7:2			Canno	ot be us	ed.	
			1:0	SEL1-SEL0	R/W	SEL1	SEL0	Rang	e Select
						0	0	Mid F	Range (2.5 V to 6 V)
						0	1		Range (1.25 V to 3 V)
						1	0	Ultra	low Range (0.573 V to 1.375 V)
						1	1	Ultra	low Range (0.573 V to 1.375 V)

REV. 0 -5-

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descr	Description				
VP3	10H	PS3OVTH	7:0	OV7-OV0	R/W	8-bit d	8-bit digital value for OV threshold on PS3 SFD.				
	11H	PS30VHYST	7:5			Canno	ot be us	ed.			
			4:0	HY4-HY0	R/W	5-bit hysteresis to be subtracted from PS3OVTH when OV is					
	12H	PS3UVTH	7:0	UV7–UV0	R/W	8-bit digital value for UV threshold on PS3 SFD.					
	13H	PS3UVHYST	7:5			Cannot be used.					
			4:0			5-bit hysteresis to be added from PS3UVTH when UV is true.					
	14H	SFDV3CFG	7:5			Canno	ot be us	ed.			
			4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (µs)		
						0	0	0	0		
						0	0	1	5		
						0	1	0	10		
						0	1	1	20		
						1	0	0	30		
						1	0	1	50		
						1	1	0	75		
						1	1	1	100		
			1:0	RS1-RS0	R/W	RS1	RS0	Fault	Type Select		
						0	0	OV			
						0	1	UV o	r OV		
						1	0	UV			
						1	1	Off			
	15H	SFDV3SEL	7:2			Canno	ot be us	ed.			
			1:0	SEL1-SEL0	R/W	SEL1	SEL0	Rang	e Select		
						0	0	Midra	ange (2.5 V to 6 V)		
						0	1		Range (1.25 V to 3V)		
						1	0		low Range (0.573 V to 1.375 V)		
						1	1		low Range (0.573 V to 1.375 V)		

-6- REV. 0

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descr	iption					
VP4	18H	PS40VTH	7:0	OV7-OV0	R/W	8-bit o	digital v	alue fo	r OV threshold on PS4 SFD.			
	19H	PS40VHYST	7:5			Canno						
			4:0	HY4-HY0	R/W	5-bit h	5-bit hysteresis to be subtracted from PS40VTH when OV					
	1AH	PS4UVTH	7:0	UV7–UV0	R/W	8-bit o	8-bit digital value for UV threshold on PS4 SFD.					
	1BH	PS4UVHYST	7:5			Canno	ot be us	sed.				
			4:0			5-bit hysteresis to be added from PS4UVTH when UV is true.						
	1CH	SFDV4CFG	7:5			Cannot be used.						
			4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (µs)			
						0	0	0	0			
						0	0	1	5			
						0	1	0	10			
						0	1	1	20			
						1	0	0	30			
						1	0	1	50			
						1	1	0	75			
						1	1	1	100			
			1:0	RS1-RS0	R/W	RS1	RS0	Fault	Type Select			
						0	0	OV				
						0	1	UV o	r OV			
						1	0	UV				
						1	1	Off				
	1DH	SFDV4SEL	7:2			Canno	ot be us	sed.				
			1:0	SEL1-SEL0	R/W	SEL1	SEL0	Rang	e Select			
						0	0		ange (2.5 V to 6 V)			
						0	1		Range (1.25 V to 3 V)			
						1	0	Ultra	low Range (0.573 V to 1.375 V)			
						1	1		low Range (0.573 V to 1.375 V)			

REV. 0 -7-

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descr	Description					
VH	20H	PSVHOVTH	7:0	OV7-OV0	R/W	8-bit o	digital v	alue fo	r OV threshold on PSVH SFD.			
	21H	PSVHOVHYST	7:5			Canno	Cannot be used.					
			4:0	HY4-HY0	R/W		5-bit hysteresis to be subtracted from PSVHOVTH when OV is true.					
	22H	PSVHUVTH	7:0	UV7–UV0	R/W	8-bit d	8-bit digital value for UV threshold on PSVH SFD.					
	23H	PSVHUVHYST	7:5			Canno	ot be us	sed.				
			4:0				5-bit hysteresis to be added from PSVHUVTH when UV is true.					
	24H	SFDVHCFG	7:5			Cannot be used.						
			4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (µs)			
						0	0	0	0			
						0	0	1	5			
						0	1	0	10			
						0	1	1	20			
						1	0	0	30			
						1	0	1	50			
						1	1	0	75			
						1	1	1	100			
			1:0	RS1-RS0	R/W	RS1	RS0	Fault	Type Select			
						0	0	OV				
						0	1	UV o	r OV			
						1	0	UV				
						1	1	Off				
	25H	SFDVHSEL	7:1			Canno	ot be us	sed.				
			0	SEL0	R/W	R/W SEL0 Range Select			t			
			-		0 High Range (6.0 V to 14.4 V)							
						1 Medium Range (2.5 V to 6.0 V)						

-8- REV. 0

Table II. (continued)

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description	
VX1	28H	X10VTH	7:0	OV7-OV0	R/W	8-bit digital va	lue for OV threshold on X1 SFD.
	29H	X10VHYST	7:5			Cannot be use	d.
			4:0	HY4-HY0	R/W	5-bit hysteresis	s to be subtracted from X10VTH when OV is true.
	2AH	X1UVTH	7:0	UV7–UV0	R/W	<u> </u>	lue for UV threshold on X1 SFD.
	2BH	X1UVHYST	7:5			Cannot be use	
		7.10711101	4:0				s to be added from X1UVTH when UV is true.
	2CH	SFDX1CFG	7:5			Cannot be use	
	2011	or BX for G	4:2	GF2–GF0	R/W		GF0 Delay (μs)
			7.2	0.2 0.0	""		0 0
						0 0	1 5
							0 10
						0 1 1 0	1 20 0 30
							0 30 1 50
							0 75
						1 1	1 100
			1:0	RS1-RS0	R/W	RS1 RS0	Fault Type Select
							OV
							UV or OV
							UV Off
	2011	CEDVV4CEI	7.0				
	2DH	SFDVX1SEL	7:2	0514 0510	Daar.	Cannot be use	
			1:0	SEL1-SEL0	R/W		Function Select SFD (Fault) only
							GPI (Fault) only
							GPI (Fault) + SFD (Warning)
						1 1	No Function (input can still be used as ADC input)
	2EH	GPIX1CFG	7			Cannot be use	ed.
			6	INVIN	R/W	If High, invert	input.
			5	INTYP	R/W	Determines w	hether a level or an edge is detected on the pin.
						INTYP Level/E	Edge
						0 Detect	
						1 Detect	Edge
			4:3	PULS1-0	R/W	Length of puls	e output once an edge has been detected on input.
							Pulse Length (µs)
							10
							100 1000
							10000
			2:0	GF2-GF0	R/W		ength of time for which a pulse is ignored.
							GF0 Delay (μs)
							0 0
						0 0	1 5
							0 10
						0 1 1 0	1 20 0 30
							1 50
						•	0 75
						1 1	1 100

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descr	iption		
VX2	30H	X2OVTH	7:0	OV7-OV0	R/W	8-bit o	digital v	alue fo	r OV threshold on X2 SFD.
	31H	X20VHYST	7:5			Canno	ot be us	ed.	
			4:0	HY4-HY0	R/W	5-bit h	nvsteres	sis to b	e subtracted from X2OVTH when OV is true.
	32H	X2UVTH	7:0	UV7–UV0	R/W		-		r UV threshold on X2 SFD.
	33H	X2UVHYST	7:5			Canno	ot be us	ed.	
			4:0			5-bit h	nysteres	sis to b	e added from X2UVTH when UV is true.
	34H	SFDX2CFG	7:5			-	ot be us		
	•	0.2/.20.0	4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (μs)
			4.2	di 2-di 0	10,00	0	0	0	0
						0	0	1	5
						0	1	0	10
						0	1	1	20
						1	0	0	30
						1	0	1	50
						1 1	1 1	0 1	75 100
			1.0	DC4 DC0	DAA				
			1:0	RS1-RS0	R/W	RS1	RS0 0	OV	Type Select
						0	1	UV o	r OV
						1	0	UV	
						1	1	Off	
	35H	SFDVX2SEL	7:2			Canno	ot be us	sed.	
			1:0	SEL1-SEL0	R/W	SEL1	SEL0	Func	tion Select
						0	0		(Fault) only
						0	1		Fault) only
						1	0		Fault) + SFD (Warning)
						1	1	No F	unction (input can still be used as ADC input)
	36H	GPIX2CFG	7			Canno	ot be us	sed.	
			6	INVIN	R/W	If Higl	h, inver	t input.	
			5	INTYP	R/W	Deter	mines v	whethe	r a level or an edge is detected on the pin.
						INTYF	Level	/Edge	
						0		t Level	
						1	Detec	t Edge	
			4:3	PULS1-0	R/W	Lengt	h of pu	lse out	put once an edge has been detected on input.
						PULS	1 PULS	0 Pulse	Length (μs)
						0	0	10	
						0	1	100	
						1 1	0 1	1000 1000	n
			2.0	CE2 CE2	R/W				
			2:0	GF2-GF0	H/VV			_	of time for which a pulse is ignored.
						GF2 0	GF1 0	GF0 0	Delay (μs) 0
						0	0	1	5
						0	1	0	10
						0	1	1	20
						1	0	0	30
						1	0	1	50
						1	1	0	75
						1	1	1	100

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description
VX3	38H	X30VTH	7:0	OV7-OV0	R/W	8-bit digital value for OV threshold on X3 SFD.
-	39H	X30VHYST	7:5			Cannot be used.
			4:0	HY4-HY0	R/W	5-bit hysteresis to be subtracted from X3OVTH when OV is true.
	ЗАН	X3UVTH	7:0	UV7–UV0	R/W	8-bit digital value for UV threshold on X3 SFD.
	3BH	X3UVHYST	7:5			Cannot be used.
			4:0			5-bit hysteresis to be added from X3UVTH when UV is true.
	3CH	SFDX3CFG	7:5			Cannot be used.
			4:2	GF2–GF0	R/W	GF2 GF1 GF0 Delay (μs)
						0 0 0 0
						0 0 1 5
						0 1 0 10
						0 1 1 20
						1 0 0 30 1 0 1 50
						1 1 0 75
						1 1 1 100
			1:0	RS1-RS0	R/W	RS1 RS0 Fault Type Select
			1.0	1.01 1.00		0 0 OV
						0 1 UV or OV
						1 0 UV
						1 1 Off
	3DH	SFDVX3SEL	7:2			Cannot be used.
			1:0	SEL1-SEL0	R/W	SEL1 SEL0 Function Select
						0 0 SFD (Fault) only
						0 1 GPI (Fault) only 1 0 GPI (Fault) + SFD (Warning)
						1 1 No Function (input can still be used as ADC input)
	3EH	GPIX3CFG	7			Cannot be used.
			6	INVIN	R/W	If High, invert input.
			5	INTYP	R/W	Determines whether a level or an edge is detected on the pin.
					.,	INTYP Level/Edge
						0 Detect Level
						1 Detect Edge
			4:3	PULS1-0	R/W	Length of pulse output once an edge has been detected on input.
						PULS1 PULS0 Pulse Length (µs)
						0 0 10
						0 1 100
						1 0 1000
			0.0	CE0 CE0	DAA	1 1 10000
			2:0	GF2–GF0	R/W	Glitch filter—length of time for which a pulse is ignored.
						GF2 GF1 GF0 Delay (μs) 0 0 0 0
						0 0 1 5
						0 1 0 10
						0 1 1 20
						1 0 0 30
						1 0 1 50
						1 1 0 75 1 1 1 100
						1 1 100

REV. 0 -11-

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption		
VX4	40H	X40VTH	7:0	OV7-OV0	R/W	8-bit d	igital v	alue fo	r OV threshold on X4 SFD.
	41H	X40VHYST	7:5			Canno	t be us	ed.	
			4:0	HY4-HY0	R/W	5-bit h	ysteres	sis to b	e subtracted from X4OVTH when OV is true.
	42H	X4UVTH	7:0	UV7–UV0	R/W	8-bit d	igital v	alue fo	r UV threshold on X4 SFD.
-	43H	X4UVHYST	7:5			Canno	t be us	ed.	
			4:0			5-bit h	ysteres	sis to b	e added from X4UVTH when UV is true.
	44H	SFDX4CFG	7:5			Canno	t be us	ed.	
			4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (μs)
						0	0	0	0
						0	0	1	5
						0	1	0	10
						0 1	1 0	1 0	20 30
						1	0	1	50
						1	1	0	75
						1	1	1	100
			1:0	RS1-RS0	R/W	RS1	RS0	Fault	Type Select
						0	0	OV	
						0	1	UV o	r OV
						1	0	UV	
						1	1	Off	
	45H	SFDVX4SEL	7:2			Canno			
			1:0	SEL1-SEL0	R/W	SEL1	SEL0		tion Select
						0	0		Fault) only
						0 1	1 0		Fault) only Fault) + SFD (Warning)
						1	1		unction (input can still be used as ADC input)
	46H	GPIX4CFG	7			Canno	t be us		<u></u>
			6	INVIN	R/W	If High	, invert	t input.	
			5	INTYP	R/W	Detern	nines v	vhethe	r a level or an edge is detected on the pin.
						INTYP	Level/	/Edae	,
						0	_	t Level	
						1	Detec	t Edge	
			4:3	PULS1-0	R/W	Length	of pul	se out	out once an edge has been detected on input.
						PULS1	PULS	0 Pulse	Length (μs)
						0	0	10	
						0	1	100	
						1 1	0 1	1000 1000	2
			2:0	GF2–GF0	R/W				of time for which a pulse is ignored.
			2.0	Grz-Gro	I II/ V V				
						GF2 0	GF1 0	GF0 0	Delay (μs) 0
						0	0	1	5
						0	1	0	10
						0	1	1	20
						1	0	0	30
						1	0	1	50
						1 1	1 1	0 1	75 100
		<u> </u>				1	'	'	100

-12- REV. 0

Table II. (continued)

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption		
VX5	48H	X50VTH	7:0	OV7-OV0	R/W	8-bit d	ligital v	alue fo	r OV threshold on X5 SFD.
	49H	X50VHYST	7:5			Canno	t be us	sed.	
			4:0	HY4-HY0	R/W	5-bit h	ystere	sis to b	e subtracted from X5OVTH when OV is true.
	4AH	X5UVTH	7:0	UV7–UV0	R/W	8-bit d	ligital v	alue fo	r UV threshold on X5 SFD.
	4BH	X5UVHYST	7:5			Canno	ot be us	ed.	
			4:0			5-bit h	vstere	sis to b	e added from X5UVTH when UV is true.
	4CH	SFDX5CFG	7:5				t be us		
			4:2	GF2-GF0	R/W	GF2	GF1	GF0	Delay (μs)
				0.2 0.0	1,,11	0	0	0	0
						0	0	1	5
						0	1	0	10
						0	1	1	20
						1	0	0	30
						1 1	0 1	1 0	50 75
							1	1	100
			1.0	RS1-RS0	R/W				Type Select
			1:0	NS1-NS0	I IT/VV	RS1 0	RS0 0	OV	Type Select
						0	1	UV o	r OV
						1	0	UV	
						1	1	Off	
	4DH	SFDVX5SEL	7:2			Canno	t be us	sed.	
			1:0	SEL1-SEL0	R/W	SEL1	SEL0	Funct	tion Select
						0	0	SFD (Fault) only
						0	1		Fault) only
						1	0	GPI (Fault) + SFD (Warning)
						1	1	No Fu	unction (input can still be used as ADC input)
	4EH	GPIX5CFG	7			Canno	t be us	sed.	
			6	INVIN	R/W	If High	n, inver	t input.	
			5	INTYP	R/W	Deterr	mines v	whethe	r a level or an edge is detected on the pin.
						INTYP	Level	/Edge	
						0		t Level	
						1	Detec	t Edge	
			4:3	PULS1-0	R/W	Length	h of pu	lse out _l	out once an edge has been detected on input.
						PULS1	1 PULS	0 Pulse	Length (μs)
						0	0	10	
						0	1	100	
						1	0	1000	•
						1	1	1000	
			2:0	GF2–GF0	R/W				of time for which a pulse is ignored.
						GF2	GF1	GF0	Delay (µs)
						0	0	0 1	0 5
						0	1	0	10
						0	1	1	20
						1	0	0	30
						1	0	1	50
						1	1	0	75
						1	1	1	100

REV. 0 -13-

ADM106x OUTPUTS

The ADM106x devices have 10 programmable driver outputs. Supply sequencing is achieved with the ADM106x by using the PDOs as control signals for supplies. The output drivers can either be used as logic enables or FET drivers.

The PDOs can be used for a number of functions; the primary function is to provide enable signals for LDOs or dc/dc convertors which generate supplies locally on a board. The PDOs can also be used to provide a POWER_GOOD signal when all of the SFDs are in tolerance, or to provide a RESET output if one of the SFDs goes out of spec (this can be used as a status signal for a DSP, FPGA, or other microcontroller).

The PDOs can be programmed to pull up to a number of different options. The outputs can be programmed as

- Open drain (allowing the user to connect an external pull-up resistor)
- Open drain with weak pull-up to V_{DD}
- Push-pull to V_{DD}
- Open drain with weak pull-up to VPn
- Push-pull to VPn
- Strong pull-down to GND
- Internally charge-pumped high drive (12 V-PDO 1–6)

The last option (available only on PDOs 1 to 6) allows the user to directly drive a voltage high enough to fully enhance an external N-fet, which is used to isolate, for example, a card-side voltage from a backplane supply (a PDO sustains greater than 10.5 V into a 1 μ A load). The pull-down switches may be used to drive status LEDs.

The data driving each of the PDOs can come from one of three sources. The source can be enabled in the PnPDOCFG configuration register. The data sources are

- · An output from the SE.
- Directly from the SMBus. A PDO can be configured so that the SMBus has direct control over it. This enables software control of the PDOs. Thus, a microcontroller could be used to initiate a software power-up/power-down sequence.
- An On-Chip Clock. A 100 kHz clock is generated on the device. This clock can be made available on any of the PDOs. It could be used to clock an external device such as an LED, for example.

Figure 5 shows the GUI window for configuring the inputs. Table III details all of the registers used to configure the outputs to perform the functions described above.

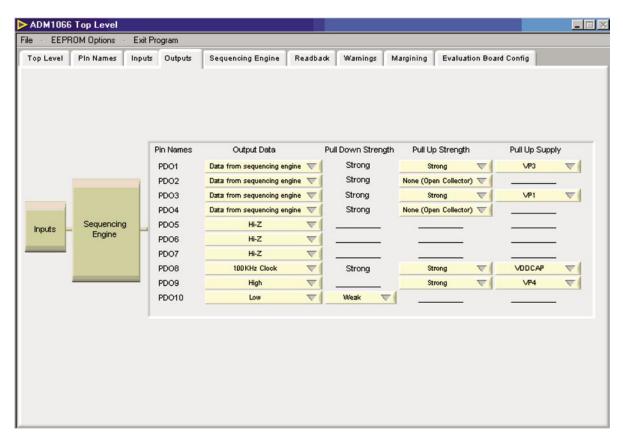


Figure 5. ADM106x Outputs Window

Table III.

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption				
PDO1	07H	PDO1CFG	7			Canno	t be use	ed.			
			6:4	CFG6-CFG4	R/W	1		_		driving the PDO, i.e., the SE, the s, directly.	
						CFG6	CFG5	CFG4	PDO S	Status	
						0	0	0	Disabl	ed with weak pull-down	
						0	0	1	Enable	ed, follows the logic driven by the SE	
						0	1	0	Enable	es SMBus data, drive low	
						0	1	1	Enable	es SMBus data, drive high	
			3:0	CFG3-CFG0	R/W	Determines the format of the pull-up on the PDO.					
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up	
						0	0	0	Χ	None	
						0	0	1	Χ	300 k Ω pull-up to VCP	
						0	1	0	0	Weak open drain pull-up to VP1	
						0	1	0	1	Push-pull pull-up to VP1	
						0	1	1	0	Weak open drain pull-up to VP2	
						0	1	1	1	Push-pull pull-up to VP2	
						1	0	0	0	Weak open drain pull-up to VP3	
						1	0	0	1	Push-pull pull-up to VP3	
						1	0	1	0	Weak open drain pull-up to VP4	
						1	0	1	1	Push-pull pull-up to VP4	
						1	1	1	0	Weak open drain pull-up to V_{DD}	
						1	1	1	1	Push-pull pull-up to V _{DD}	

REV. 0 –15–

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO2	0FH	PDO2CFG	7			Canno	t be us	ed.		
			6:4	CFG6-CFG4	R/W		ols the I or the S	•		riving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disab	led with weak pull-down
						0	0	1	Enabl	ed, follows the logic driven by the SE
						0	1	0	Enabl	es SMBus data, drive low
						0	1	1	Enabl	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	e pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V _{DD}
						1	1	1	1	Push-pull pull-up to V _{DD}

-16- REV. 0

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO3	17H	PDO3CFG	7			Canno	t be use	ed.		
			6:4	CFG6-CFG4	R/W		ols the I or the S	-		riving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disab	led with weak pull-down
						0	0	1	Enabl	ed, follows the logic driven by the SE
						0	1	0	Enable	es SMBus data, drive low
						0	1	1	Enable	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	ne pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V _{DD}
						1	1	1	1	Push-pull pull-up to V _{DD}

REV. 0 -17-

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO4	1FH	PDO4CFG	7			Canno	t be us	ed.		
			6:4	CFG6-CFG4	R/W		ols the l or the S	•		iving the PDO, i.e., the SE, the internal
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disabl	ed with weak pull-down
						0	0	1	Enable	ed, follows the logic driven by the SE
						0	1	0	Enable	es SMBus data, drive low
						0	1	1	Enable	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	e pull-up on the PDO
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	none
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V_{DD}
						1	1	1	1	Push-pull pull-up to V_{DD}

-18- REV. 0

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO5	27H	PDO5CFG	7			Canno	t be us	ed.		
			6:4	CFG6-CFG4	R/W		ols the I or the S	_		riving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disab	led with weak pull-down
						0	0	1	Enabl	ed, follows the logic driven by the SE
						0	1	0	Enable	es SMBus data, drive low
						0	1	1	Enabl	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	mines th	ne form	at of th	ie pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V _{DD}
						1	1	1	1	Push-pull pull-up to V _{DD}

REV. 0 –19–

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO6	2FH	PDO6CFG	7			Canno	t be us	ed.		
			6:4	CFG6-CFG4	R/W		ols the I or the S	•		iving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disabl	ed with weak pull-down
						0	0	1	Enable	ed, follows the logic driven by the SE
						0	1	0	Enable	es SMBus data, drive low
						0	1	1	Enable	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	e pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V_{DD}
						1	1	1	1	Push-pull pull-up to V _{DD}

–20– REV. 0

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO7	37H	PD07CFG	7			Canno	t be use	ed.		
			6:4	CFG6-CFG4	R/W		ols the lo	_		ving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disab	led, with weak pull-down
						0	0	1	Enable	ed, follows the logic driven by the SE
						0	1	0	Enabl	es SMBus data, drive low
						0	1	1	Enabl	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	ne pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V _{DD}
						1	1	1	1	Push-pull pull-up to V _{DD}

REV. 0 –21–

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO8	3FH	PDO8CFG	7			Canno	t be us	ed.		
			6:4	CFG6-CFG4	R/W		ols the lo	-		ving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disabl	ed with weak pull-down
						0	0	1	Enable	ed, follows the logic driven by the SE
						0	1	0	Enable	es SMBus data, drive low
						0	1	1	Enable	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	e pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V _{DD}
						1	1	1	1	Push-pull pull-up to V _{DD}

-22- REV. 0

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO9	47H	PDO9CFG	7			Canno	t be use	ed.		
			6:4	CFG6-CFG4	R/W	1	ols the I or the S	-		riving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disab	led, with weak pull-down
						0	0	1	Enabl	ed, follows the logic driven by the SE
						0	1	0	Enable	es SMBus data, drive low
						0	1	1	Enable	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	ne pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V _{DD}
						1	1	1	1	Push-pull pull-up to V _{DD}

REV. 0 –23–

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Descri	ption			
PDO10	4FH	PDO10CFG	7			Canno	t be us	ed.		
			6:4	CFG6-CFG4	R/W		ols the l or the S	•		iving the PDO, i.e., the SE, the internal y.
						CFG6	CFG5	CFG4	PDO S	Status
						0	0	0	Disabl	ed with weak pull-down
						0	0	1	Enable	ed, follows the logic driven by the SE
						0	1	0	Enable	es SMBus data, drive low
						0	1	1	Enable	es SMBus data, drive high
			3:0	CFG3-CFG0	R/W	Deterr	nines th	ne form	at of th	e pull-up on the PDO.
						CFG3	CFG2	CFG1	CFG0	PDO Pull-Up
						0	0	0	Χ	None
						0	0	1	Χ	300 k Ω pull-up to VCP
						0	1	0	0	Weak open drain pull-up to VP1
						0	1	0	1	Push-pull pull-up to VP1
						0	1	1	0	Weak open drain pull-up to VP2
						0	1	1	1	Push-pull pull-up to VP2
						1	0	0	0	Weak open drain pull-up to VP3
						1	0	0	1	Push-pull pull-up to VP3
						1	0	1	0	Weak open drain pull-up to VP4
						1	0	1	1	Push-pull pull-up to VP4
						1	1	1	0	Weak open drain pull-up to V_{DD}
						1	1	1	1	Push-pull pull-up to V_{DD}

-24- REV. 0

ADM1066 SEQUENCING ENGINE

The ADM1066 incorporates a sequencing engine (SE) that provides the user with powerful and flexible control of sequencing. The SE implements a state machine control of the PDO outputs, with state changes conditional on input events. SE programs can enable complex control of boards, such as power-up and power-down sequence control, fault event handling, and interrupt generation on warnings. A watchdog function to verify the continued operation of a processor clock can be integrated into the SE program. The SE can also be controlled via the SMBus, giving software or firmware control of the board sequencing.

Considering the function of the SE from an applications viewpoint, it is most instructive to think of the SE as providing a state for a state machine. This state has the following attributes:

- It is used to monitor signals indicating the status of the 10 input pins, VP1-VP4, VH, and VX1-VX5.
- It can be entered from any other state.
- There are three exit routes which move the state machine on to a next state.
 - 1. End-of-step detection
 - 2. Monitoring fault
 - 3. Timeout

- Delay timers for the end-of-step and timeout blocks can be programmed independently and change with each state change. The range of timeouts is from 0 ms to 400 ms.
- The output condition of the 10 PDO pins is defined and fixed within a state.
- The transition from one state to the next is made in less than 20 μs. This is the time taken to download a state definition from EEPROM to the SE.

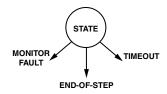


Figure 6. State Cell

The ADM106x offers up to 63 such state definitions. Each state is defined by a 64-bit word.

Figure 7 shows the GUI window for configuring the inputs. Table IV shows the detail of the 64 bits that define a state. Table VII details how to communicate with the SE.

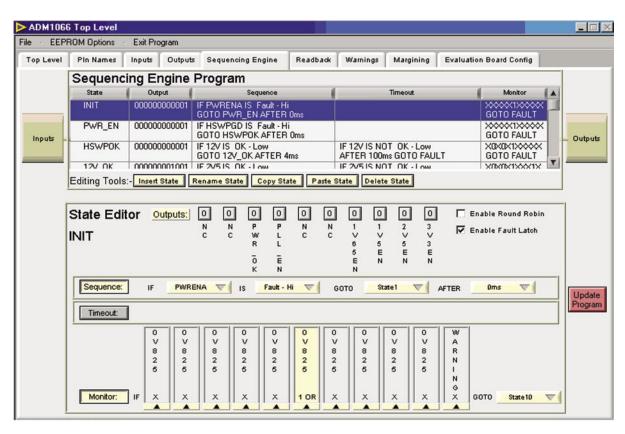


Figure 7. ADM106x Sequencing Engine Window

REV. 0 –25–

Table IV. Starting Address for Each State in SE

State	Start Address
State 0	FA00
State 1	FA08
State 2	FA10
State 3	FA18
State 4	FA20
State 5	FA28
State 6	FA30
State 7	FA38
State 8	FA40
State 9	FA48
State 10	FA50
State 11	FA58
State 12	FA60
State 13	FA68
State 14	FA70
State 15	FA78
State 16	FA80
State 17	FA88
State 18	FA90
State 19	FA98
State 20	FAA0
State 21	FAA8
State 22	FAB0
State 23	FAB8
State 24	FAC0
State 25	FAC8
State 26	FAD0
State 27	FAD8
State 28	FAE0
State 29	FAE8
State 30	FAF0
State 31	FAF8

State	Start Address
State 32	FB00
State 33	FB08
State 34	FB10
State 35	FB18
State 36	FB20
State 37	FB28
State 38	FB30
State 39	FB38
State 40	FB40
State 41	FB48
State 42	FB50
State 43	FB58
State 44	FB60
State 45	FB68
State 46	FB70
State 47	FB78
State 48	FB80
State 49	FB88
State 50	FB90
State 51	FB98
State 52	FBA0
State 53	FBA8
State 54	FBB0
State 55	FBB8
State 56	FBC0
State 57	FBC8
State 58	FBD0
State 59	FBD8
State 60	FBE0
State 61	FBE8
State 62	FBF0
State 63	FBF8

–26– REV. 0

Table V. Bitmap for Definition of Each State in SE

Bit	Operation, or If 0	If 1	Notes
0	PDO1 Output Data		
1	PDO2 Output Data		
2	PDO3 Output Data		
3	PDO4 Output Data		
4	PDO5 Output Data		
5	PDO6 Output Data		
3	PDO7 Output Data		
7	PDO8 Output Data		
}	PDO9 Output Data		
)	PDO10 Output Data		
10	Monitor Fault if VP1 = 0	Monitor Fault if VP1 = 1	Monitoring of faults on VP1 must be unmasked for this function to execute (next bit).
1	Mask VP1 Monitoring	Unmask VP1 Monitoring	Bit 11 = 1; turns on monitoring on VP1 channel.
12	Monitor Fault if VP2 = 0	Monitor Fault if VP2 = 1	Monitoring of faults on VP2 must be unmasked for this function to execute (next bit).
13	Mask VP2 Monitoring	Unmask VP2 Monitoring	Bit 13 = 1; turns on monitoring on VP2 channel.
14	Monitor Fault if VP3 = 0	Monitor Fault if VP3 = 1	Monitoring of faults on VP3 must be unmasked for this function to execute (next bit).
15	Mask VP3 Monitoring	Unmask VP3 Monitoring	Bit 15 = 1; turns on monitoring on VP3 channel.
16	Monitor Fault if VP4 = 0	Monitor Fault if VP4 = 1	Monitoring of faults on VP4 must be unmasked for this function to execute (next bit).
17	Mask VP4 Monitoring	Unmask VP4 Monitoring	Bit 17 = 1; turns on monitoring on VP4 channel.
18	Monitor Fault if VH = 0	Monitor Fault if VH = 1	Monitoring of faults on VH must be unmasked for this function to execute (next bit).
19	Mask VH Monitoring	Unmask VH Monitoring	Bit 19 = 1; turns on monitoring on VH channel.
20	Monitor Fault if VX1 = 0	Monitor Fault if VX1 = 1	Monitoring of faults on VX1 must be unmasked for this function to execute (next bit).
21	Mask VX1 Monitoring	Unmask VX1 Monitoring	Bit 21 = 1; turns on monitoring on VX1 channel.
22	Monitor Fault if VX2 = 0	Monitor Fault if VX2 = 1	Monitoring of faults on VX2 must be unmasked for this function to execute (next bit).
23	Mask VX2 Monitoring	Unmask VX2 Monitoring	Bit 23 = 1; turns on monitoring on VX2 channel.
24	Monitor Fault if VX3 = 0	Monitor Fault if VX3 = 1	Monitoring of faults on VX3 must be unmasked for this function to execute (next bit).
25	Mask VX3 Monitoring	Unmask VX3 Monitoring	Bit 25 = 1; turns on monitoring on VX3 channel.
26	Monitor Fault if VX4 = 0	Monitor Fault if VX4 = 1	Monitoring of faults on VX4 must be unmasked for this function to execute (next bit).
27	Mask VX4 Monitoring	Unmask VX4 Monitoring	Bit 27 = 1; turns on monitoring on VX5 channel.
28	Monitor Fault if VX5 = 0	Monitor Fault if VX5 = 1	Monitoring of faults on VX4 must be unmasked for this function to execute (next bit).
29	Mask VX5 Monitoring	Unmask VX5 Monitoring	Bit 29 = 1; turns on monitoring on VX5 channel.
30	Mask WARNING Monitoring	Unmask WARNING Monitoring	Can only generate a monitor fault on WARNING = 1. Is unmasked.

REV. 0 –27–

Table V. Bitmap for Definition of Each State in SE (continued)

Bit	Operation, or If 0	If 1	Notes
31	TIMEOUT<0>		Timeout length (see overleaf).
32	TIMEOUT<1>		
33	TIMEOUT<2>		
34	TIMEOUT<3>		
35	SEQCOND<0>		Sequence condition (see overleaf).
36	SEQCOND<1>		
37	SEQCOND<2>		
38	SEQCOND<3>		
39	Sequence on Selected Input = High	Sequence on Selected Input = Low	SEQSENSE
40	SEQDELAY<0>		Sequence delay (see overleaf).
41	SEQDELAY<1>		
42	SEQDELAY<2>		
43	SEQDELAY<3>		
44	MONADDR<0>		MONADDR<5:0> is the state number to jump to if a monitor function fault occurs.
45	MONADDR<1>		
46	MONADDR<2>		
47	MONADDR<3>		
48	MONADDR<4>		
49	MONADDR<5>		
50	TIMADDR<0>		TIMADDR<5:0> is the state number to jump to if a timeout fault occurs.
51	TIMADDR<1>		
52	TIMADDR<2>		
53	TIMADDR<3>		
54	TIMADDR<4>		
55	TIMADDR<5>		
56	SEQADDR<0>		SEQADDR<5:0> is the state number to jump to if a sequence fault occurs.
57	SEQADDR<1>		
58	SEQADDR<2>		
59	SEQADDR<3>		
60	SEQADDR<4>		
61	SEQADDR<5>		
62	Round Robin Disable	Round Robin Enable	This is OR'd with RRCTRL.2.
63	Fault Latch Closed	Fault Latch Open	
	+		-

Table VI. Timeouts and Delays for Functions in SE

TIMEOUT<3:0>	SEQDELAY<3:0>Delay (ms)
0	0
1	0.1
2	0.2
3	0.4
4	0.7
5	1
6	2
7	4
8	7
9	10
10	20
11	40
12	70
13	100
14	200
15	400

SEQCOND<3:0>	Sequence On Signal From
0	"Never" Never sequence; set SEQSENSE = 0 always to ensure no sequence (bit 39).
1	VP1
2	VP2
3	VP3
4	VP4
5	VH
6	VX1
7	VX2
8	VX3
9	VX4
10	VX5
11	WARNING
12	SWFLOW; Unconditional GOTO; always set SEQSENSE = 0 to ensure proper operation.

Table VII. Communicating with the SE

Reg.	Reg. Name	Bits	Bit Name	R/W	Description
93H	SECTRL	7:3			Cannot be used.
		2	SWCONTINUE	W	Allows software control of SE state changes. Can force an unconditional jump to the next state. The bit can be set as the condition for an end-of-step change. This enables the user to clear external interrupts by moving forward a state. The bit self clears to 0 after the state change has occurred.
		1	SWSTEP	R/W	Step the SE forward to the next state. Use in conjunction with the HALT bit to step through a sequence. Can be used as a tool for debugging sequences.
		0	HALT	R/W	Halt the SE. State changes will not happen. Must be set to allow read, erase, or write access to the SE EEPROM.
E9	SEADDR	7:6			
		5:0	ADDR	R	SE current state used in conjunction with 93H:0.

REV. 0 –29–

ADM106x ADC

The ADM1062, ADM1063, ADM1064, and ADM1066 all feature an on-chip 12-bit ADC. The ADC has a 12 (13 on the ADM1063) channel analog mux on the front end. Any or all of these inputs can be selected to be read by the ADC. Thus the ADC can be set up to continuously read the selected channels. The circuit controlling this operation is called the round robin. The user selects which channels they wish to operate on and the ADC performs a conversion on each in turn. Averaging can be turned on, setting the round robin to take 16 conversions on each channel; otherwise, a single conversion is made on each channel. At the end of this cycle, the results are all written to the output registers and, at the same time, compared with preset thresholds provided on the

ADM106x which can be programmed to a maximum or minimum allowable threshold. Only one register is provided for each input channel so a UV or OV threshold, but not both, can be set for a given channel. Exceeding the threshold generates a warning that can be read back from the status registers or input into the SE via an OR gate. The round robin can be enabled via an SMBus write, or can be programmed to turn on at any particular point in the SE program; for instance, it can be set to start once a power-up sequence is complete and all supplies are known to be within expected fault limits.

Figure 8 shows the GUI window for configuring the ADC. Table VIII shows the detail of the registers required to set up the ADC and its inputs.

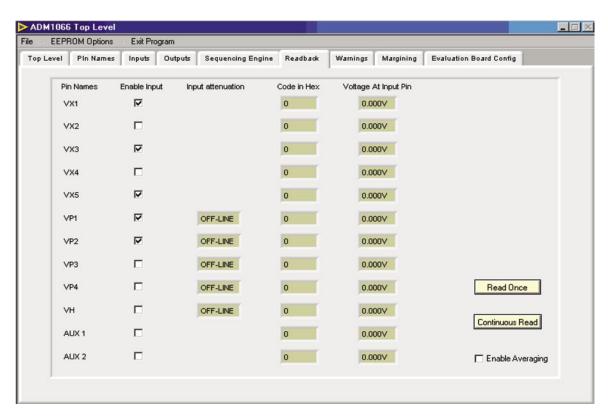


Figure 8. ADM106x ADC Readback Window

Table VIII. ADC Readback Configuration Registers

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description		
Limit R	legiste	rs—an ADC read	ding a	bove or belo	w this	limit generates a warning.		
VP1	70H	ADCVP1LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on VP1 input		
VP2	71H	ADCVP2LIM	7:0	LIM7–LIM0	R/W	Limit register for ADC conversion on VP2 input		
VP3	72H	ADCVP3LIM	7:0	LIM7–LIM0	R/W	Limit register for ADC conversion on VP3 input		
VP4	73H	ADCVP4LIM	7:0	LIM7–LIM0	R/W	Limit register for ADC conversion on VP4 input		
VH	74H	ADCVHLIM	7:0	LIM7–LIM0	R/W	Limit register for ADC conversion on VH input		
VX1	75H	ADCVX1LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on VX1 input		
VX2	76H	ADCVX2LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on VX2 input		
VX3	77H	ADCVX3LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on VX3 input		
VX4	78H	ADCVX4LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on VX4 input		
VX5	79H	ADCVX5LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on VX5 input		
INTS	7AH	ADCITLIM	7:0	LIM7–LIM0	R/W	Limit register for ADC conversion on internal temp sensor (ADM1062, ADM1063 only)		
AUX1	7AH	ADCAUX1LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on Aux 1 channel (ADM1064, ADM1066 only)		
EXTS1	7BH	ADCXT1LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on external temp sensor 1 (ADM1062, ADM1063 only)		
AUX2	7BH	ADCAUX2LIM	7:0	LIM7–LIM0	R/W	Limit register for ADC conversion on external temp sensor 1 (ADM1064, ADM1066 only)		
EXTS2	7CH	ADCXT2LIM	7:0	LIM7-LIM0	R/W	Limit register for ADC conversion on external temp sensor 2 (ADM1063 only)		
Sense	Registe	ers-determines	whe	n a warning	is gene	rated.		
VX3	7DH	LSENSE1	7	SENS7	R/W	Limit sense for VX3 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		
VX2			6	SENS6	R/W	Limit sense for VX2 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		
VX1			5	SENS5	R/W	Limit sense for VX1 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		
VH			4	SENS4	R/W	Limit sense for VH (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		
VP4			3	SENS3	R/W	Limit sense for VP4 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		
VP3			2	SENS2	R/W	Limit sense for VP3 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		
VP2			1	SENS1	R/W	Limit sense for VP2 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		
VP1			0	SENS0	R/W	Limit sense for VP1 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1= ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)		

REV. 0 –31–

Table VIII. ADC Readback Configuration Registers (continued)

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description
	7EH	LSENSE2	7	SENS7		Cannot be used.
			6	SENS6		Cannot be used.
			5	SENS5		Cannot be used.
EXTS2			4	SENS4	R/W	Limit sense for External Temp Sensor 2 (ADM1063 only) (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)
AUX2			3	SENS3	R/W	Limit sense for AUX2 (ADM1064, ADM1066 only) (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)
EXTS1			3	SENS3	R/W	Limit sense for External Temp Sensor 1 (ADM1062, ADM1063 only) (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)
AUX1			2	SENS2	R/W	Limit sense for AUX1 (ADM1064, ADM1066 only) (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)
INTS			2	SENS2	R/W	Limit sense for Internal Temp Sensor (ADM1062, ADM1063 only) (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)
VX5			1	SENS1	R/W	Limit sense for VX5 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)
VX4			0	SENS0	R/W	Limit sense for VX4 (0 = ADC > LIMIT gives warning, i.e., OVERVOLTAGE, 1 = ADC < LIMIT gives a warning, i.e., UNDERVOLTAGE)
Round	Robin S	Select Registe	rs-dete	rmine which i	nputs ar	re actually read by the ADC as it cycles.
VX3	80H	RRSEL1	7	VX3CHAN	R/W	0 => VX3 is included in RR. 1 => VX3 is excluded from RR.
VX2			6	VX2CHAN	R/W	0 => VX2 is included in RR. 1 => VX2 is excluded from RR.
VX1			5	VX1CHAN	R/W	0 => VX1 is included in RR. 1 => VX1 is excluded from RR.
VH			4	VHCHAN	R/W	0 => VH is included in RR. 1 => VH is excluded from RR.
VP4			3	VP4CHAN	R/W	0 => VP4 is included in RR. 1 => VP4 is excluded from RR.
VP3			2	VP3CHAN	R/W	0 => VP3 is included in RR. 1 => VP3 is excluded from RR.
VP2			1	VP2CHAN	R/W	0 => VP2 is included in RR. 1 => VP2 is excluded from RR.
VP1			0	VP1CHAN	R/W	0 => VP1 is included in RR. 1 => VP1 is excluded from RR.

Table VIII. ADC Readback Configuration Registers (continued)

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description
	81H	RRSEL2	7			Cannot be used.
			6			Cannot be used.
			5			Cannot be used.
EXTS2			4	EXTCH2	R/W	0 => External Temp Sensor 2 is included in RR. 1=>External Temp Sensor 2 is excluded from RR (ADM1063 only).
AUX2			3	AUX2CHAN	R/W	0 => Auxilliary Channel 2 is included in RR. 1=> Auxilliary Channel is excluded from RR (ADM1064, ADM1066 only).
EXTS1			3	EXTCH1	R/W	0 => External Temp Sensor 1 is included in RR. 1=> External Temp Sensor 1 is excluded from RR (ADM1062, ADM1063 only).
AUX1			2	AUX1CHAN	R/W	0 => Auxilliary Channel 1 is included in RR. 1=> Auxilliary Channel 1 is excluded from RR (ADM1064, ADM1066 only).
INTS			2	INTCH1	R/W	0 => Internal Temp Sensor 1 is included in RR. 1=> Internal Temp Sensor 1 is excluded from RR (ADM1062, ADM1063 only).
VX5			1	VX5CHAN	R/W	0 => VX5 is included in RR. 1=> VX5 is excluded from RR.
VX4			0	VX4CHAN	R/W	0 => VX4 is included in RR. 1=> VX4 is excluded from RR.
Round	Robin	Control Regis	ter—a	ctivates ADC re	ead. De	etermines if averaging is used and if continuous read.
	82H	RRCTRL	7:5			Cannot be used.
			4	CLEARLIM	R/W	Write this bit high to clear limit warnings. This bit then self clears.
			3	STOPWRITE	R/W	Inhibits the RR from writing the results to the output registers.
			2	AVERAGE	R/W	Turn on 16× averaging.
			1	ENABLE	R/W	Turn on the RR for continuous operation.
			0	GO	R/W	Start the RR.
Temp S	Sensor	Configuration	Regis	ter		
	83H	TSCTRL	7:3			Cannot be used.
			2	LOWDN2	R/W	Turn off V _{BE} biasing for D2N (ADM1063 only) .
			1	LOWDN1	R/W	Turn off V _{BE} biasing for D1N.
			0	DIODE_CK	R/W	Set this bit to perform a diode check. If set, this causes the ADC result for the two external channels to limit at full-scale positive if a diode is present. Used for board checking.

REV. 0 -33-

Table VIII. ADC Readback Configuration Registers (continued)

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description
ADC V	alue Re	gisters	•		•	
VP1	A0H	ADCHVP1	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VP1 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VP1 when 82H:2 (Average) = 1.
	A1H	ADCLVP1	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VP1 input.
VP2	A2H	ADCHVP2	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VP2 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VP2 when 82H:2 (Average) = 1.
	АЗН	ADCLVP2	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VP2 input.
VP3	A4H	ADCHVP3	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VP3 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VP3 when 82H:2 (Average) = 1.
	A5H	ADCLVP3	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VP3 input.
VP4	A6H	ADCHVP4	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VP4 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VP4 when 82H:2 (Average) = 1.
	А7Н	ADCLVP4	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VP4 input.
VH	A8H	ADCHVH	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VH when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VH when 82H:2 (Average) = 1.
	А9Н	ADCLVH	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VH input.
VX1	AAH	ADCHVX1	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VX1 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VX1 when 82H:2 (Average) = 1.
	ABH	ADCLVX1	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VX1 input.
VX2	ACH	ADCHVX2	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VX2 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VX2 when 82H:2 (Average) = 1.
	ADH	ADCLVX2	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VX2 input.

Table VIII. ADC Readback Configuration Registers (continued)

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description
VX3	AEH	ADCHVX3	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VX3 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VX3 when 82H:2 (Average) = 1.
	AFH	ADCLVX3	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VX3 input.
VX4	вон	ADCHVX4	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VX4 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VX4 when 82H:2 (Average) = 1.
	B1H	ADCLVX4	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VX4 input.
VX5	B2H	ADCHVX5	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of ADC conversions on VX5 when 82H:2 (Average) = 0.
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of ADC conversions on VX5 when 82H:2 (Average) = 1.
	взн	ADCLVX5	7:0	OUT7-OUT0	R/W	8 LSBs of 12- or 16-bit result of the ADC conversions on VX5 input.
INTS	B4H	ADCHITS	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of Internal Temp Sensor conversion (ADM1062, ADM1063 only).
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of Internal Temp Sensor conversion (ADM1062, ADM1063 only).
	В5Н	ADCLITS	7:0	OUT7-OUT0	R/W	Low Byte of Internal Temp Sensor conversion (ADM1062, ADM1063 only).
AUX1	B4H	ADCHAUX1	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of AUX1 conversion (ADM1064, ADM1066 only).
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of AUX1 conversion (ADM1064, ADM1066 only).
	В5Н	ADCLAUX1	7:0	OUT7-OUT0	R/W	Low Byte of AUX1 conversion (ADM1064, ADM1066 only).
EXTS1	В6Н	ADCHXTS1	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of External Temp Sensor 1 conversion (ADM1062, ADM1063 only).
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of External Temp Sensor 1 conversion (ADM1062, ADM1063 only).
	В7Н	ADCLXTS1	7:0	OUT7-OUT0	R/W	Low Byte of External Temp Sensor 1 conversion (ADM1062, ADM1063 only).
AUX2	В6Н	ADCHAUX2	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of AUX2 conversion (ADM1064, ADM1066 only).
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of AUX2 conversion (ADM1064, ADM1066 only).
	В7Н	ADCLAUX2	7:0	OUT7-OUT0	R/W	Low byte of AUX2 conversion (ADM1064, ADM1066 only).

REV. 0 –35–

Table VIII. ADC Readback Config	uration Registers (continued)
---------------------------------	---------------------	------------

Input	Reg.	Reg. Name	Bits	Bit Name	R/W	Description
EXTS2	B8H	ADCHXTS2	7:4			Not used if 82H:2 (Average) = 0.
			3:0	OUT3-OUT0	R/W	4 MSBs of 12-bit result of External Temp Sensor 2 conversion (ADM1063 only).
			7:0	OUT7-OUT0	R/W	8 MSBs of 16-bit result of External Temp Sensor 2 conversion (ADM1063 only).
	В9Н	ADCLXTS2	7:0	OUT7-OUT0	R/W	Low byte of External Temp Sensor 2 conversion (ADM1063 only).

ADM106x DACs

The ADM1062, ADM1066, and ADM1067 all feature six voltage output DACs. These DACs are primarily used to adjust the output voltage of a dc-dc converter by altering the current at its feedback node. These DACs, therefore, provide an open-loop margining system. The ADC on the ADM1062 and ADM1066 closes this loop. For more information on margining, refer to the relevant data sheet.

When the DACn output buffer is turned on it has very little effect on the dc-dc output. The DAC output buffer has been designed to power-up without glitching. It does this by first powering up the buffer to follow the pin voltage and does not drive out on to the pin at this time. Once the output buffer is properly enabled, the buffer input is switched over to the DAC and the output stage of the buffer is turned on; output glitching is negligible.

Four DAC ranges are offered and these are placed with midcode (code 0x7F) at 0.6 V, 0.8 V, 1.0 V, and 1.25 V. These voltages are placed to correspond to the most common feedback voltages. Centering the DAC outputs in this way provides the best use of the DAC resolution, i.e., for most supplies it will be possible to place the DAC midcode at the point where the dc-dc output is not modified, thus giving a full half each of the DAC range to margin up and down. The DAC output voltage is set by the code written to the DACn register. The voltage is linear with the unsigned binary number in this register. The code 0x7F is placed at the midcode voltage as described above. The output voltage is given by the following equation:

$$DACoutput = (DACn - 0x7F)/255 \times 0.6015 + V_{OFF}$$

where V_{OFF} is one of the four offset voltages described above.

Limit registers (called DPLIMn and DNLIMn) on the device offer the user some protection from firmware bugs which could cause catastrophic board problems by forcing supplies beyond their allowable output ranges. Essentially the DAC code written into the DACn register is clipped so that the code used to set the DAC voltage is actually given by

 $DAC\ Code = DACn, DNLIMn \le DACn \le DPLIMn$ DNLIMn, DACn < DPLIMnDPLIMn, DACn > DPLIMn

The DAC output buffer is three-stated if DNLIMn > DPLIMn. It is possible for the user to make it very difficult for the DAC output buffers to be turned on at all in normal system operation by programming the limit registers in this way (these are among the registers downloaded from EEPROM at start-up).

Figure 9 shows the GUI window for configuring the DACs. Table VIII shows the detail of the registers required to set up the DACs.

-36- REV. 0

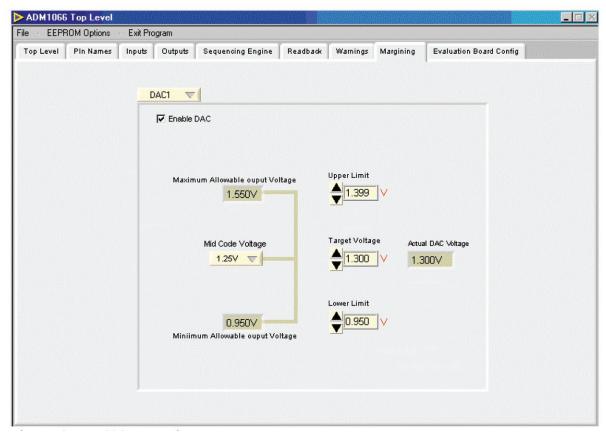


Figure 9. ADM106x DAC Window

Table IX. DAC Configuration Registers

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Description	n		
DAC1	50H	DACCTRL1	7:3			Cannot be u	sed.		
			2	ENDAC	R/W	Enable DAC	1		
			1:0	OFFSEL1-0	R/W	Selects the	center voltage	(midcode) output of DAC1	
						OFFSEL1	OFFSEL0	(midcode) Output Voltage	
						0	0	1.25 V	
						0	1	1.0 V	
						1	0	0.8 V	
						1	1	0.6 V	
	58H	DAC1	7:0	DAC7-0	R/W	8-bit DAC co	ode (0x7f ls mi	dcode)	
	60H	DPLIM1	7:0	LIM7-0	R/W		the DAC code	de. If DAC1 is set to a limits to the contents	
	68H	DNLIM1	7:0	LIM7-0	R/W		8-bit DAC negative limit code. If DAC1 is set to a lower code the DAC code limits to the contents of this register.		
							C output is alv	pe greater than DPLIM1 ways disabled (this is a	

REV. 0 -37-

Table IX. DAC Configuration Registers (continued)

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Description	1		
DAC2	51H	DACCTRL2	7:3			Cannot be us	Cannot be used.		
			2	ENDAC	R/W	Enable DAC2	2		
			1:0	OFFSEL1-0	R/W	Selects the c	enter voltage	(midcode) output of DAC2	
						OFFSEL1	OFFSEL0	(midcode) Output Voltage	
						0	0	1.25 V	
						0	1	1.0 V	
						1	0	0.8 V	
						1	1	0.6 V	
-	59H	DAC2	7:0	DAC7-0	R/W	8-bit DAC co	de (0x7f ls mi	dcode)	
	61H	DPLIM2	7:0	LIM7-0	R/W	8-bit DAC positive limit code. If DAC2 is set to a higher code, the DAC code limits to the contents of this register.			
	69H	DNLIM2	7:0	LIM7-0	R/W		the DAC code	ode. If DAC2 is set to a limits to the contents of	
							C output is alv	pe greater than DPLIM2, ways disabled (this is a	

Table IX. DAC Configuration Registers (continued)

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Description	1		
DAC3	52H	DACCTRL3	7:3			Cannot be us	Cannot be used.		
			2	ENDAC	R/W	Enable DAC3	3		
			1:0	OFFSEL1-0	R/W	Selects the c	enter voltage	(midcode) output of DAC3	
						OFFSEL1	OFFSEL0	(midcode) Output Voltage	
						0	0	1.25 V	
						0	1	1.0 V	
						1	0	0.8 V	
						1	1	0.6 V	
	5AH	DAC3	7:0	DAC7-0	R/W	8-bit DAC co	de (0x7f ls mi	dcode)	
	62H	DPLIM3	7:0	LIM7-0	R/W	8-bit DAC positive limit code. If DAC3 is set to a code higher than this, the DAC code limits to the contents of this register.			
	6AH	DNLIM3	7:0	LIM7-0	R/W		han this, the	ode. If DAC3 is set to a DAC code limits to the	
							Coutput is alv	pe greater than DPLIM3, ways disabled (this is a	

REV. 0 –39–

Table IX. DAC Configuration Registers (continued)

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Description	1	
DAC4	53H	DACCTRL4	7:3			Cannot be u	sed.	
			2	ENDAC	R/W	Enable DAC	4	
			1:0	OFFSEL1-0	R/W	Selects the c	enter voltage	(midcode) output of DAC4
						OFFSEL1	OFFSEL0	(midcode) Output Voltage
						0	0	1.25 V
						0	1	1.0 V
						1	0	0.8 V
						1	1	0.6 V
	5BH	DAC4	7:0	DAC7-0	R/W	8-bit DAC co	de (0x7f ls mi	dcode)
	63H	DPLIM4	7:0	LIM7-0	R/W	8-bit DAC positive limit code. If DAC4 is set to a higher code, the DAC code limits to the contents of this register.		
	6BH	DNLIM4	7:0	LIM7-0	R/W		the DAC code	ode. If DAC4 is set to a limits to the contents of
							C output is alv	pe greater than DPLIM4, ways disabled (this is a

Table IX. DAC Configuration Registers (continued)

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Description	1		
DAC5	54H	DACCTRL5	7:3			Cannot be us	Cannot be used.		
			2	ENDAC	R/W	Enable DACS	5		
			1:0	OFFSEL1-0	R/W	Selects the c	enter voltage	(midcode) output of DAC5	
						OFFSEL1	OFFSEL0	(midcode) Output Voltage	
						0	0	1.25 V	
						0	1	1.0 V	
						1	0	0.8 V	
						1	1	0.6 V	
	5CH	DAC5	7:0	DAC7-0	R/W	8-bit DAC co	de (0x7f ls mi	dcode)	
	64H	DPLIM5	7:0	LIM7-0	R/W	8-bit DAC positive limit code. If DAC5 is set to a higher code, the DAC code limits to the contents of this register.			
	6CH	DNLIM5	7:0	LIM7-0	R/W	8-bit DAC negative limit code. If DAC5 is set to lower code, the DAC code limits to the content this register.			
							Coutput is alv	pe greater than DPLIM5, ways disabled (this is a	

REV. 0 -41-

Table IX. DAC Configuration Registers (continued)

Output	Reg.	Reg. Name	Bits	Bit Name	R/W	Description	1		
DAC6	55H	DACCTRL6	7:3			Cannot be u	Cannot be used.		
			2	ENDAC	R/W	Enable DAC	6		
			1:0	OFFSEL1-0	R/W	Selects the o	enter voltage	(midcode) output of DAC6	
						OFFSEL1	OFFSEL0	(midcode) Output Voltage	
						0	0	1.25 V	
						0	1	1.0 V	
						1	0	0.8 V	
						1	1	0.6 V	
	5DH	DAC6	7:0	DAC7-0	R/W	8-bit DAC co	de (0x7f ls mi	dcode)	
	65H	DPLIM6	7:0	LIM7-0	R/W	8-bit DAC positive limit code. If DAC6 is set to a higher code, the DAC code limits to the contents of this register.			
	6DH	DNLIM6	7:0	LIM7-0	R/W		the DAC code	ode. If DAC6 is set to a limits to the contents of	
							C output is alv	pe greater than DPLIM6, ways disabled (this is a	

FAULT/STATUS REPORTING ON THE ADM106x

If a fault occurs on one of the inputs being monitored by the ADM106x, i.e., a supply on one of the VXn/VPn/VH pins moves outside its threshold window, a logic level is de-asserted, or an ADC input violates the limit set in its limit register, it is possible to identify exactly on which input the fault occurred. This is done by reading back the fault plane over the SMBus. The fault plane is simply two registers, FSTAT1 and FSTAT2, where each bit represents a function, e.g., a VPn pin or an ADC channel, for example. By reading the contents of these registers and determining which bits are set to 1, the user can identify the inputs on which faults have occurred. A 1 is defined as a fault. The exception to this is when a VXn pin is used as a digital input. In that case a 1 is the true logic value of the input on the pin.

The fault data is reported to the fault plane only if explicitly enabled. This is done by setting the fault latch bit high in each individual state. To do this set bit 63 in the relevant state configuration to 1 (see Table V). If this bit is not set, then a fault which occurs in this state will not be latched in the fault plane.

The ADM106x also features a number of status registers that can be read at any time to determine the status of the inputs. The contents of these registers can change at any time, i. e., the data is not latched in these registers as is the case with FSTAT1 and FSTAT2. Table IX shows the detail of the fault and status registers.

Table X. Fault and Status Registers

Reg.	Reg. Name	Bits	Bit Name	R/W	Description
E0	FSTAT1	7	FLT_VX3	R	Fault output from VX3 pin (either as a GPI or as an SFD)
		6	FLT_VX2	R	Fault output from VX2 pin (either as a GPI or as an SFD)
		5	FLT_VX1	R	Fault output from VX1 pin (either as a GPI or as an SFD)
		4	FLT_VH	R	Fault output from VH SFD
		3	FLT_VP4	R	Fault output from VP4 SFD
		2	FLT_VP3		Fault output from VP3 SFD
		1	FLT_VP2		Fault output from VP2 SFD
		0	FLT_VP1		Fault output from VP1 SFD
E1	FSTAT2	7:2			Cannot be used.
		1	FLT_VX5	R	Fault output from VX5 pin (either as a GPI or as an SFD).
		0	FLT_VX4	R	Fault output from VX4 pin (either as a GPI or as an SFD).
E2	UVSTAT1	7	UV_VX3	R	UV threshold exceeded on VX3 (SFD) or VP3 (warning)
		6	UV_VX2	R	UV threshold exceeded on VX2 (SFD) or VP2 (warning)
		5	UV_VX1	R	UV threshold exceeded on VX1 (SFD) or VP1 (warning)
		4	UV_VH	R	UV threshold exceeded on VH SFD
		3	UV_VP4	R	UV threshold exceeded on VP4 SFD
		2	UV_VP3	R	UV threshold exceeded on VP3 SFD
		1	UV_VP2	R	UV threshold exceeded on VP2 SFD
		0	UV_VP1	R	UV threshold exceeded on VP1 SFD
E3	UVSTAT2	7:2			Cannot be used.
		1	UV_VX5	R	UV threshold exceeded on VX5 (SFD) or VH (warning)
		0	UV_VX4	R	UV threshold exceeded on VX4 (SFD) or VP4 (warning)
E4	OVSTAT1	7	OV_VX3	R	OV threshold exceeded on VX3 (SFD) or VP3 (warning)
		6	OV_VX2	R	OV threshold exceeded on VX2 (SFD) or VP2 (warning)
		5	OV_VX1	R	OV threshold exceeded on VX1 (SFD) or VP1 (warning)
		4	OV_VH	R	OV threshold exceeded on VH SFD
		3	OV_VP4	R	OV threshold exceeded on VP4 SFD
		2	OV_VP3	R	OV threshold exceeded on VP3 SFD
		1	OV_VP2	R	OV threshold exceeded on VP2 SFD
		0	OV_VP1	R	OV threshold exceeded on VP1 SFD
E5	OVSTAT2	7:2			Cannot be used.
		1	OV_VX5	R	OV threshold exceeded on VX5 (SFD) or VH (warning)
		0	OV_VX4	R	OV threshold exceeded on VX4 (SFD) or VP4 (warning)
E8	GPISTAT	7:5			Cannot be used.
		4	VX5_STAT	R	VX5 GPI input status (after signal conditioning)
		3	VX4_STAT	R	VX4 GPI input status (after signal conditioning)
		2	VX3_STAT	R	VX3 GPI input status (after signal conditioning)
		1	VX2_STAT	R	VX2 GPI input status (after signal conditioning)
		0	VX1_STAT	R	VX1 GPI input status (after signal conditioning)

REV. 0 -43-